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Abstract

Researchers and practitioners are typically familiar with descriptive statistics and statistical inference. However, outside of regression techniques, 
little attention may be given to questions around prediction. In the current paper, we introduce prediction intervals using fundamental concepts 
that are learned in descriptive and inferential statistical training (i.e., sampling error, standard deviation). We walk through an example using simple 
hand calculations and reference a simple R package that can be used to calculate prediction intervals.
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Highlights 

•	 Researchers and practitioners are typically familiar with descriptive statistics and statistical inference but may know little about 
prediction

•	 We introduce prediction intervals using fundamental concepts that are learned in descriptive and inferential statistical training
•	 Prediction intervals use a current sample statistic to provide a range (i.e., probabilistic upper and lower bounds) for future sample statistics 
•	 In an applied example, we show how to calculate and interpret a prediction interval
•	 We use Study 1 sample data to generate a range of values that is likely to contain, a yet to be conducted, Study 2 mean

Introduction and background

The prediction interval is a valuable but some-
times over-looked interval in statistical training (1-
4). Many of the statistics familiar to researchers and 
practitioners are descriptive or inferential. Inferen-
tial statistics are primarily concerned with using 
sample data to estimate population attributes (i.e., 
population parameters). In contrast, prediction in-
tervals provide information about what result may 
be expected in a future sample (5-7). Prediction in-
tervals use information from a past sample to esti-
mate a range of values for a future sample statistic 
(8,9). In the current paper, we introduce readers to 

the logic underlying the calculation of prediction 
intervals. To ensure readers are able to easily fol-
low the logic underlying these intervals we focus 
on the simplest case where we assume past and 
future samples are obtained from the same nor-
mally distributed population via simple random 
sampling.

A prediction interval for a sample mean is an inter-
val that captures a future sample mean with a 
specified probability; 1-alpha (9). Prediction inter-
vals model uncertainty in future data that can be 
expected due to sampling error. Sampling error is 
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the difference between a sample estimate and the 
population parameter and will always be present 
when the sample size is smaller than the popula-
tion. Correspondingly, sampling error decreases as 
sample size increases. In the case of prediction in-
tervals, there are two sources of sampling variabil-
ity that must be considered: (a) sampling variabili-
ty associated with the current sample mean, and 
(b) the sampling variability associated with the fu-
ture sample mean. As a result, prediction intervals 
incorporate sampling error from two estimates 
into a single interval. 

For those interested in a more “mathematically 
precise definition of a prediction interval” we en-
courage readers to consult Hahn and Nelson’s 
more technical definitions of prediction intervals 
(10). Although we introduce prediction intervals 
focusing on the most straightforward scenario 
(sample means and normally distributed popula-
tions) it is also possible to construct prediction in-
tervals in more complex scenarios. For example, 
prediction intervals are available for future obser-
vations and statistics such as effect sizes  as well as 
for non-normal populations such as for exponen-
tial, binomial, Poisson, lognormal, and gamma dis-
tributions (7,9,10-12). 

Because of their data-driven nature and future fo-
cus, prediction intervals are quite useful in a varie-
ty of research and applied contexts. Prediction in-
tervals have been used in the context of multiple 
regression (e.g., analyzing immunological respons-
es to vaccinations); and have been recommended 
for use in meta-analyses examining treatment ef-
fectiveness (13,14). In laboratory medicine, predic-
tion intervals have sometimes been used to estab-
lish reference ranges to interpret what test result 
may be considered normal or typical (15,16). Con-
sequently, prediction intervals are an interesting 
statistic with both practical and research applica-
tions. 

It is helpful to distinguish prediction intervals from 
confidence intervals because confidence intervals 
can sometimes incorrectly be interpreted as pre-
diction intervals (17). For confidence intervals, the 
95% value refers to the percentage of confidence 
intervals that are expected to contain the popula-

tion parameter with repeated random sampling 
(18). In effect, a confidence interval is way of gen-
erating a plausible range of values for a popula-
tion parameter. This interpretation differs sharply 
from that of a prediction interval which focuses on 
the generation of a plausible range of values for a 
future sample statistic. Consequently, confidence 
intervals do not perform well when used to cap-
ture future sample statistics. Simulation research 
has found that 95% confidence intervals capture 
future sample statistics at levels typically much 
lower than 95% and this reduced capture rate var-
ies greatly across research scenarios (7).

In the sections to follow, we show how to calculate 
prediction intervals using sample-level estimates 
of a population parameter to generate a range of 
values that is likely to contain a subsequent sam-
ple-level estimate. We present an approach to un-
derstanding prediction intervals with the aim of 
making prediction intervals understandable and 
accessible to those with a background in descrip-
tive and inferential statistics.

An example

We begin by considering a fictitious example of a 
laboratory that tests for Analyte X which is normal-
ly distributed in the population of interest. As 
members of the laboratory, we are beginning an 
initiative to routinely screen for Analyte X concen-
trations in blood samples of people who live in a 
medium sized urban municipality. To begin, the 
laboratory randomly samples 100 adults (i.e., n1 = 
100) for inclusion in the first screening (i.e., Study 
1). Results of Study 1 reveal that the average con-
centration of Analyte X was 80 ppm (xpeople1

 = 80). 
This sample mean is an estimate of the population 
mean (i.e., the mean Analyte X concentrations for 
the population, the population of the municipali-
ty). This sample data can be used to generate an 
estimate of the population variance for Analyte X 
concentrations. In this example the estimated 
population variance is 225 (i.e., s2

people1 = 225). 
That is, 225 is an estimate of the variance of Ana-
lyte X concentrations for all adults in the munici-
pality.



https://doi.org/10.11613/BM.2024.030101	 Biochem Med (Zagreb) 2024;34(3):030101 

		  3

Contini M. et al.	 Prediction intervals

(Eq. 1).

The laboratory plans to conduct follow-up testing 
six months later, we will call this future study, 
Study 2. Because of sampling error, the results 
from a new sample are expected to be different 
from the first sample. However, what results may 
be expected if nothing has changed in the envi-
ronment to increase or decrease Analyte X con-
centrations? To get an estimate of what results can 
be expected, the lab can calculate a prediction in-
terval. A prediction interval will provide the lab 
with a probable range of results that can be ex-
pected in test results simply due to sampling error. 
In the next sections, we walk through the compo-
nents that go into calculating a prediction interval 
using this example.

Statistical analysis 

A prediction interval for sample means can be cal-
culated using the predictionInterval package for R 
(19,20). R is a general purpose free open-source 
statistical software used by a range of research dis-
ciplines. Prediction intervals for means can be cal-
culated in two simple ways: (a) using the statistical 
software with the predictionInterval package or (b) 
via a website app. Below, we present the code 
needed to calculate a prediction interval for sam-
ple means using the predictionInterval package 
(which assumes a normally distributed popula-
tion). In the code, “M” is the mean of the sample 
data, “SD” is the sample estimate of the popula-
tion standard deviation (i.e., using n-1 in the de-
nominator), “n” is the number of people in the cur-
rent sample, and “rep.n” is the sample size of the 
future yet to be conducted study. The output indi-
cates 95% prediction interval that ranges from 
76.35 to 83.65.

library(predictionInterval)

pi.m(M = 80,

SD = sqrt(225),

n = 100,

rep.n = 200)

#Predictioninterval:

# 95% PI [76.35, 83.65].

Prediction intervals and sampling 
distributions

A simple way to understand how prediction inter-
vals work is to consider the laboratory’s Study 1 
from a sampling perspective. To start, we can im-
agine that adults in the municipality vary in the 
amount of Analyte X concentrations in their blood. 
We can think of the variability in Analyte X concen-
trations for each person as a distribution. The dis-
tribution of Analyte X concentrations for all people 
in the municipality can be thought of as a popula-
tion. We represent the Analyte X concentrations of 
the people forming the population using the no-
tation μpeople for the population mean and σ2

people 
for the population variance (i.e., the population 
parameters). The population-level variability in 
people’s Analyte X concentrations is illustrated in 
Figure 1A - which is depicted using people as icons 
as reminder individual Analyte X concentrations 
are represented in this figure. Notice that the pop-
ulation variance (σ2

people) is unknown but estimat-
ed by s2

people from Study 1. 

Recall, the laboratory wants to determine what 
mean concentration of Analyte X is reasonable to 
expect in Study 2 based on the concentrations 
from Study 1. Said another way, the laboratory is 
interested in modeling how much a Study 2 mean, 
xpeople2

, is expected to differ from the Study 1 
mean, xpeople1

 due to sampling error. This differ-
ence can be expressed using the letter D as illus-
trated below (Equation (Eq.) 1):

D = xpeople1
 – xpeople2

Mathematically modeling D, the difference be-
tween the Study 1 mean and the Study 2 mean, is 
a four-step process. First, we estimate the variance 
of the distribution for Study 1 means. Second, we 
estimate the variance of the distribution for the, 
yet to be conducted, Study 2 means. Third, we 
combine the information from Steps 1 and 2 to 
calculate the variance for the distribution of mean 
differences (i.e., D). Finally, we calculate a predic-
tion interval based on the standard deviation of 
the mean differences. These steps are outlined be-
low.

https://replication.shinyapps.io/mean/
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Step 1: Estimating sampling error in 
Study 1 

We begin by creating a mathematical model for 
Study 1 results. That is, we imagine repeating 
Study 1 (using n1 = 100) an infinite number of times 
and calculating a mean for each study, resulting in 
an infinite set of sample means. This infinitely large 
set of sample means is collectively referred to as 
the sampling distribution of the mean. Thus, a 
sampling distribution of the mean in this context 
is a distribution of means calculated from all pos-
sible random samples of n = 100 from the popula-
tion. This type of sampling distribution is illustrat-
ed in Figure 1B - the distribution is shaded with 
the sample mean symbol as a reminder it is a dis-
tribution that represents mean Analyte X concen-
trations not Analyte X concentrations for individu-
als.

In Figure 1B, we use the symbol μx to refer to the 
mean of a distribution of sample means and the 
symbol  to refer to the variance of this distribution 
of sample means. Collectively, the sampling distri-

bution of means, in Figure 1B, represents all possi-
ble sample mean outcomes of Study 1, which use 
a sample size of 100. Even though the laboratory 
only collected one of these possible outcomes, the 
variance of this distribution is estimated from the 
sample data collected in Study 1. As depicted in 
Figure 1, to calculate this value, we do not actually 
need the infinitely large distribution of sample 
means to calculate its variance. The variance of 
this distribution of sample means (i.e., σ    =

σ2
people

n
2
x ) is linked 

to the variance of the distribution of individuals in 
the population (σ2

people) by the sample size (n). This 
relation is presented in Eq. 2 below.

(Eq. 2).σ    =
σ2

people

n
2
x

Figure 1. Population and sampling distribution of the mean.

Because σ2
people is a population parameter and is 

not typically known, we will need to use an esti-
mate (i.e., s2

people) of the population-level variance 
from Study 1. To obtain s2

people, we would use the 
formula for estimating the population-level vari-

σ    =
σ2

people

n
2
x

σ2
people s2

people

s    =
s2

people

n
2
x

A. Distribution of people

B. Distribution of sample means

x x
x x x
xx x x
xx x x x

x

x

Estimates

Estimates

μ

μpeople

n – 1
=

(xi – xpeople)2∑n
i = 1
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ance from sample data, illustrated below. In this 
example, 225 is an estimate, based on sample 
data, of the variance in the Analyte X concentra-
tions for all adults in the municipality (i.e., the pop-
ulation).

(Eq. 3).

(Eq. 4).

(Eq. 5).

We can use an estimate of the population-level 
variance to obtain an estimate of the variance of 
the distribution of sample means, using Eq. 4 
below

s    =
s2

people

n
2
x

With this formula, we can estimate the variance of 
the distribution of sample means for Study 1 via 
the calculation below. Note, we now use the sub-
script 1 to identify that this is the estimate for 
Study 1,

s2
people1 n – 1

= = 225
∑(xi – x)2

Figure 2. Sampling distributions with two different sample siz-
es.

A visual representation of this sampling distribu-
tion can be found in Figure 2A. In continuing with 
the goal of forecasting probable differences be-
tween the average Analyte X concentrations that 
might be found between Study 1 and Study 2, the 
laboratory also needs a model of the yet to be 
conducted Study 2. To do so, we can use the same 
technique to estimate the variance of the sam-
pling distribution for Study 1 for, the yet to be con-
ducted, Study 2, by using the data from Study 1.

Step 2: Estimating sampling error in the 
future study (Study 2) 

At first glance it may not appear possible to use 
the same technique from Study 1 for the yet to be 
conducted Study 2. This is because Study 2 is a hy-
pothetical future study that has not been conduct-

ed. However, the calculation of a prediction inter-
val does not require any data from Study 2 - we 
can use data from Study 1. Specifically, the formula 
for the variance of the sampling distribution of the 
mean for Study 2 requires an estimate of the pop-
ulation variance. Fortunately, we can use the esti-
mate of the population variance from Study 1 for 
Study 2. Crucially, it is assumed that both samples 
used in Study 1 and Study 2 are from the same 
population, the municipality. Consequently, s2

peo-

ple1 is an estimate of the population variance that is 
relevant to both Study 1 and Study 2 because both 
studies sample from the same population.

s2
people1
n1

s    =2
x1

= =225
100

2.25

x
x x x

x x x x
xxxxxx
x x x x x x

x

x1

x x x x x x x
xx x x x x x x xx

xx x x x x x x x x xx

σ    =
σ2

people

n1

=
σ2

people

100

2
x

σ    =
σ2

people

n2

=
σ2

people

200

2
x

A. Sampling distribution of means, n1 = 100

B. Sampling distribution of means, n2 = 200

C. Sampling distribution of difference in means, n1 = 100, n2 = 200

x
x x x

x x x x
x x x x
x x x x

x x x x x x
x x x x x x x x

x2

x2x1D = –
σ2

D = σ2 (x1 – x2)

σ2
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n1
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=

=

+
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+
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Consequently, the same rational that we used in 
Study 1 also applies to Study 2. The only thing that 
changes is the sample size estimate that the lab 
will use in Study 2. That is, we adapt Eq. 5, repeat-
ed below, by using the sample size of the second 
study, n2 = 200, in combination with the popula-
tion-variance estimate from the first study, s2

people1,

ber of times. In other words, we need to know how 
D is expected to vary across a large number of 
samples. To obtain the variance of the sampling 
distribution for D, we can use the variance sum 
law, see Eq. 8 below, which can be used to provide 
the variance for the difference (or sum) of inde-
pendent variables:

s2
people1
n2

s    =2
x2

= =225
200

1.125

This equation uses the subscript 2 for 
s2

people1
n2

s    =2
x2

= =225
200

1.125 as a re-
minder that it is an estimate of the variance of the 
sample means in Study 2. The resulting value, 
1.125, is an estimate of the variability of all possible 
mean Analyte X concentrations for random sam-
ples of 200 in Study 2 - assuming these samples 
are drawn from the same population as Study 1. 
This sampling distribution variance for Study 2 is 
estimated entirely from Study 1 data (Study 2 data 
has not been collected) and is illustrated in Figure 2B.

Now the laboratory has estimates of the variance 
of the distribution of sample means for both Study 
1 and, the yet to be conducted, Study 2. However, 
neither of the variance estimates are of direct in-
terest. We merely use them as inputs in the calcu-
lation for the variance of the difference in sample 
means.

Step 3: Estimating sampling error of the 
difference between means 

In trying to set expectations for the second Ana-
lyte X sample mean, the laboratory is effectively 
interested in modeling how much the average An-
alyte X concentration from Study 2 is expected dif-
fer from the average Analyte X concentration from 
Study 1. Consequently, we need to model the 
mean difference between Study 1 and Study 2 re-
sults. This difference is expressed using the letter 
D see Eq. 7 below:

(Eq. 6).

(Eq. 7).

(Eq. 8 ).

D = xpeople1
 – xpeople2

We need a model of how D will vary when both 
Study 1 and Study 2 are conducted a large num-

σ2
(A-B) = σ2

A + σ2
B

With the variance sum law, the laboratory can cal-
culate the variance of a column of difference (A - B) 
using only knowledge of the variance of A and the 
variance of B. We can see an illustration of this in 
Table 1.

Using the variance sum law, we can determine the 
variance of the sampling distribution for D where 
D = x

1
 – x

2
. This formula is illustrated below using 

the population-level notion from the previous two 
sections. Note the population variance, σ2

people, is 
the same for both sample sizes (i.e., for Study 1 
and Study 2). The sampling distribution for the dif-
ference between the Study 1 and Study 2 means is 
illustrated in Figure 2C and Eq. 9

(Eq. 9 ).

As before, because population values are un-
known, we need to estimate the variance of the 
distribution of mean difference in sample means, 
see Figure 2C, using Eq. 10. Again, because Study 1 
and Study 2 are samples from the same popula-
tion we can use s2

people1 as the estimate of the pop-
ulation variance for both studies,

σ2
(A – B) = σ2

A + σ2
B

σ2
(x1 – x2) =           

1
          +

σ2
people

n
σ2

people

n2

σ2
D =           

1
          +

σ2
people

n
σ2

people

n2

σD =                
1
          +

σ2
people

n
σ2

people

n2
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Inserting the previously calculated values we ob-
tain (Eq. 11):

Step 4: Calculating the prediction 
interval

We can now use the above values to calculate a 
prediction interval. A prediction interval is con-
structed much like a confidence interval - though 
interpreted quite differently. A confidence interval 
is based on the distribution of sample means (i.e., 
x) whereas a prediction interval is based on the 
distribution of differences (i.e., D) in sample means. 
Consequently, to construct a prediction interval, 
the laboratory will use the sampling distribution of 
the difference between means D, that we re-
viewed above.

To do so we use the following formula (Eq. 14):

A B (A-B)

σ2
A = 12.64 σ2

B = 2.00 σ2
(A-B) = 14.64

9 3 6

2 4 -2

6 5 1

12 6 6

4 7 -3

Note: Variances were calculated using N in the denominator. 
Because A and B are independent COV(A,B) = 0. 

Table 1. Illustration of the variance sum law for two indepen-
dent variables

(Eq. 10).

(Eq. 12).

(Eq. 13).

(Eq. 11).

(Eq. 14).

s2
people1
n1

s2
people1
n2

s    =2
D

+

The corresponding estimated standard deviation 
of the distribution of mean differences is present-
ed in Eq. 12

s2
people1
n1

s2
people1
n2

s   =
D +

Consequently, the standard deviation for the dis-
tribution of mean differences is 1.837117. The cor-
responding sampling distribution is illustrated in 
Figure 2C (Eq. 13)

s2
people1
n1

s2
people1
n2

s   =
D + = √3.375 = 1.837117

95%PI = x1 ± t97.5sD

In Eq. 14 sD is the standard deviation of the sam-
pling distribution for the difference between 
means (referred to by some as the standard error 
for the distribution differences in sample means). 
Here, the degrees of freedom for the t-distribution 
is based on Study 1 alone: df = n1 - 1 = 100 - 1 = 99.

Recall, in Study 1, x
1
 = 80, s2

people1 = 225, and n1 = 
100. Following from the sample size there are 99 
degrees of freedom, df = 99. Using this informa-
tion, we can calculate the prediction interval in the 
following way (Eq. 15):

(Eq. 15).

Consequently, the prediction interval is 95% PI 
[76.35, 83.65]. This can be interpreted as there be-
ing a 95% chance that the mean for Study 2 will 
fall in this range; provided sampling error is the 
only reason for the difference between the two 

s2
people1
n1

s2
people1
n2

s    =

=

= 2.25 + 1.125

= 3.375

2
D

+

+
225

100

225

200

s2
people1
n1

s2
people1
n2

+

+
225

100

225

200

95%PI = x1 ± t97.5(df = 99)SD

95%PI = x1 ± t97.5(df = 99)

= 80 ± 1.984217

= 80 ± 1.984217(1.837117)

= 80 ± 3.645239
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means. Thus, the 95% prediction interval may be 
used to estimate a plausible range of values for 
the Study 2 mean. Consequently, although finding 
a mean outside of this range in Study 2 can be ex-
pected due to sampling error because it is a 95% 
prediction interval, not a 100% prediction interval, 
a mean outside of this range is unlikely and could 
be indicative of something other than sampling 
error occurring to cause the difference. 

Conclusions

In the current paper, we describe the prediction 
interval, a useful but sometimes overlooked inter-
val (1-4). We reviewed prediction intervals for sam-
ple means obtained from normally distributed 
populations focusing on the logic underlying 
these calculations. Our aim was to make the pre-
diction interval intuitive and accessible across a 
range of knowledge levels. We also provided infor-
mation about an R package, predictionInterval that 
can easily calculate prediction intervals without 
any manual calculations (19). 

There are a number of advantages to using predic-
tion intervals. Prediction intervals are available for 
a variety of distributions and applications and they 
are relatively simple to calculate, even from small 
sample sizes. Moreover, a key assumption of pre-
diction intervals is that the data have been collect-
ed via random sampling, thus if this assumption is 
violated, the intervals should be interpreted with 
caution. However, in the context of laboratory 
work where there is generally a high degree of 
control, the assumption of random sampling may 
be more readily satisfied compared to other con-
texts.

For additional practical examples on the use of 
prediction intervals interested readers may con-
sult Coskun (21). This paper demonstrates how 
prediction intervals can be used in range of practi-
cal scenarios (e.g., patient monitoring, evaluating 
laboratory instruments). Here, Coskun outlines a 
novel application of prediction intervals to gener-
ate personalized reference intervals such that re-
peated testing for a specific individual can be used 
to generate individual prediction intervals based 
on within-person variability (21). In earlier work, 

these intervals were referred to as personalized 
reference intervals (22). This approach provides a 
novel way to use prediction intervals to establish 
reference intervals. Others have argued against us-
ing prediction intervals to establish reference in-
tervals (23). 

Prediction intervals have some notable limitations. 
First, they assume the first sample and the second 
sample are obtained from the same population. 
Second, they assume random sampling was used 
to obtain the sample participants and only consid-
er sampling error as a source of variability. For ex-
ample, uncertainty due to measurement or lab er-
rors is not taken into account when a prediction 
interval is calculated. The width of a prediction in-
terval is determined entirely by random sampling 
error calculations.

Third, somewhat similar to significance testing and 
confidence intervals, the conclusions that can be 
drawn from prediction intervals may appear 
somewhat constrained and unsatisfactory. For ex-
ample, even when there is a significant difference 
between two sample means you cannot be 100% 
certain there is a difference between the corre-
sponding population means. Likewise, a 95% con-
fidence interval may fail to capture a population 
mean; indeed, it will fail to do so 5% of time. Simi-
larly, with prediction intervals, it is not possible to 
draw 100% definitive conclusions about results 
that fall either within or outside the interval. For 
example, a 95% prediction interval will fail to cap-
ture the next sample mean 5% of the time – due 
to random sampling error alone. However, there 
are other reasons that a sample mean could fall 
outside of the prediction interval. For example, if a 
researcher obtained a second sample mean from a 
different population (violating a prediction inter-
val assumption) then the second sample mean 
might fall outside the prediction interval because 
the population has changed. 

Confidence intervals are used to generate a plausi-
ble range of values for unknown population pa-
rameters; in contrast, prediction intervals are used 
to generate a plausible range of values for a future 
sample statistic. Both intervals are based on ran-
dom sampling error calculations. Patel notes the 
past and the future distinction in his definition of a 
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prediction interval as, “an interval which uses the 
results of a past sample to contain the results of a 
future sample from the same population with a 
specified probability” (9). Thus, a key difference 
between confidence intervals and prediction in-
tervals is the fact that confidence intervals capture 
population parameters whereas prediction inter-
vals capture a future sample statistic (7). Because 
prediction intervals model sampling error in two 
sources, (a) the past data and (b) the future data, 
they tend to be wider than confidence intervals. 
Confidence intervals can also sometimes be incor-
rectly interpreted as prediction intervals.
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