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Abstract

Quantiles and percentiles represent useful statistical tools for describing the distribution of results and deriving reference intervals and performance 
specification in laboratory medicine. They are commonly intended as the sample estimate of a population parameter and therefore they need to be 
presented with a confidence interval (CI). In this work we discuss three methods to estimate CI on quantiles and percentiles using parametric, non-
parametric and resampling (bootstrap) approaches. The result of our numerical simulations is that parametric methods are always more accurate re-
gardless of sample size when the procedure is appropriate for the distribution of results for both extreme (2.5th and 97.5th) and central (25th, 50th and 
75th) percentiles and corresponding quantiles. We also show that both nonparametric and bootstrap methods suit well the CI of central percentiles 
that are used to derive performance specifications through quality indicators of laboratory processes whose underlying distribution is unknown. 
Keywords: biostatistics; statistical methods; confidence intervals; extra-analytical phase

Received: July 28, 2018 Accepted: October 25, 2018

Confidence interval for quantiles and percentiles

Cristiano Ialongo*

Department of Human Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy

*Corresponding author: cristiano.ialongo@gmail.com

Lessons in biostatistics

Introduction

Percentiles and quantiles are statistics used for 
summarizing the relative location of data within a 
set according to their magnitude and indepen-
dently from a particular underlying probability 
distribution (1). Owing to this, they are broadly ap-
plied in biomedical field where non-normality due 
to outlier contamination or natural skewness is 
commonly observed. 

Percentiles are also useful tools in the field of qual-
ity management to show the distribution of ob-
served performance data and for attributing qual-
ity grading and goals in extra-analytical processes 
through indicators (2). A set of central percentiles 
that partition the population into equally sized 
ranges of values (e.g. the 25th, 50th and 75th per-
centiles collectively known as “quartiles”) are com-
monly employed to attribute a progressively high-
er level of performance (3). Another quality appli-
cation concerns establishing reference intervals 
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for interpreting laboratory tests results (4). In this 
scenario, a pair of extreme percentiles, often 0.5th 

- 99.95th or 2.5th - 97.5th that cut-off 1% or 5% popu-
lation, respectively, are used to find those subjects 
whose testing seems to exceed the expected ho-
meostatic variability in a biological parameter (5).

In both of these applications, a sample is drawn 
once from the population to find out the estimate 
of the true parameter, afterwards the value is re-
peatedly applied to a number of new individuals 
or items to identify them. According to theory, any 
point estimate is bound to its sample by an instant 
bias that depends on the randomness that oc-
curred at the time of the sampling process (6). 
Therefore, any new observation randomly with-
drawn from the same population is not necessarily 
compatible with the former point estimate be-
cause bias was not necessarily the same. Of course, 
the issue reduces to show that the newly observed 
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value did not differ significantly from the sample 
estimate and in turn the true population parame-
ter. To this end, it is suitable using the frequentist 
confidence interval (CI) whereby it is found the 
range of putative population true value that did 
not differ from the sample estimate with a confi-
dence level as large as 1-α (7,8).

To date, the discussion about using CI on extreme 
percentiles in building reference intervals has 
spurred investigations and recommendations that 
have been included in guidelines issued by official 
bodies and reviewed in books (9-17). However, lit-
tle has been done concerning central percentiles, 
which are pivotal for the undergoing develop-
ment of the extra-analytical quality field. There-
fore, the present work was meant to give a theo-
retical introduction to the topic, also providing a 
comparison of the methods suitable for placing CI 
on percentiles via parametric, non-parametric and 
resampling approaches. To this end, we made use 
of numeric simulations for reproducing various 
conditions commonly encountered in laboratory 
medicine quality management where the depar-
ture from normality is more or less pronounced 
but the true population distribution is seldom 
known.

A technical premise on percentiles and 
quantiles

First of all, let’s start recalling that the quantile (xr) 
is the rth element within an ordered set of size N 
whose value is larger than or equal to that of q = 
r/N elements (i.e. x1 ≤ x2 ≤…≤ xr…≤ xn-1 ≤ xn). Ac-
cording to the frequentist paradigm, the probabil-
ity (P) that any observation xi within the set has to 
occur can be defined with respect to xr with the 
following equation (Eq.):

P(xi ≤ xr) = q (Eq. 1).

If certainty is expressed as 100% of occurrence of 
observations, then it can be written that p = 
(100*q)% is the percentile of the dataset (1). Since 
the distinction between percentiles and quantiles 
reduces to the indexing, then methods discussed 
in the next sections are equally valid for both of 

them, even though they are presented using the 
quantile and thus xr. 

The parametric CI method (in the 
Gaussian case)

Several parametric approaches can be used in or-
der to estimate CI about the sample quantile (P-CI) 
when the underlying distribution is of the Gaussi-
an kind (18). To this concern, if the dataset had av-
erage m and standard deviation s, the value xr 
could be sought straightforwardly via the stand-
ardization procedure:

z = (xr - m) / s (Eq. 2).

In fact, rearranging Eq. 2 yields:

xr = m + (z*s) (Eq. 3).

Notably, since n is a sample from the population N, 
m and s were estimates of the true parameters µ 
and σ respectively. Accordingly, xr was the esti-
mate (̂ xr) of the population true quantile Xr giving 
the partition R = q/N. Therefore, we can write:

^xr = m + (z*s) (Eq. 4)

Xr = µ + (z*σ) (Eq. 5).

Particularly, Eq. 5 shows that wherever µ and σ 
were known also the true quantile Xr was so. 

At this point it is possible to reason concerning the 
CI on ^xr (19). Of course, the estimate ^xr depend-
ed on both the sampling error (s) and the true val-
ue of the quantile Xr. If the latter was postulated 
basing on the assumption of normality and thus 
was given through the z of the standard normal 
curve N(0,1) according to Eq. 5 for the given per-
centile q, then we could summarize the “accuracy” 
of our finding through the quantity:

V = (̂ xr - Xr) / s (Eq. 6).

There is a striking similarity between Eq. 6 and the 
Student t-statistic, and indeed the V-statistic 
shows how ^xr varies around Xr that in turn is how 
the estimate difference (̂ xr - Xr) is distributing. To 
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this regard, the V-statistic was shown to follow a 
Student t-distribution with n-1 degrees of freedom 
but with non-null centrality parameter (19). This 
particular condition (termed “non-centrality”) is 
explained by the evidence that the V-statistic was 
taken under the alternative hypothesis of non-null 
difference of the estimate from the true parameter 
since ^xr was assumed to be biased (i.e. deviating) 
by definition according to Eq. 4 (in contrast, the t-
statistic is usually evaluated under the hypothesis 
of null difference and thus the non-centrality pa-
rameter equates 0) (18). Accordingly, the distribu-
tion of the V-statistic can be used to find out the 
range that ^xr was expected to lay in with proba-
bility of untrue finding equal to α:

P(a ≤ V ≤ b) = 1 – α (Eq. 7).

Therefore, rewriting Eq. 6 in the appropriate man-
ner and substituting for it in Eq. 7, given the non-
centrality parameter of the t distribution λ = - z*n0.5 
(that we will refer to as t[n-1,λ]) it can be shown after 
simplifications: 

lower P-CI = [m – (t1-α/2,[n-1,λ]*s*n -0.5)] (Eq. 8)

upper P-CI = [m – (tα/2,[n-1,λ]*s*n -0.5)] (Eq. 9).

Notably, whenever the underlying distribution is 
known, although not Gaussian (e.g. Weibull or log-
normal), an appropriate parametric procedure to 
form CI can be set up likewise (20,21). 

The non-parametric CI method

Let us begin recalling that for q = r/n, then r = n*q 
(e.g. if q = 0.2 and n = 10 then r = 2) that is simply 
the number of elements within the subset identi-
fied by xr.

Supposing that n was withdrawn from a popula-
tion N, obviously the sample quantity xr depended 
upon how many observations smaller than or 
equal to the population Xr were actually with-
drawn. To this concern, it must me noted that each 
sample observation xi had chance q to be xi ≤ Xr 
(i.e. belonging to the partition of N as large as q*N), 
and thus it was known a-priori regardless of the 
true value Xr (22,23). 

According to the reasoning so far, the chance to 
find a certain estimate of Xr (say ^xr) can be re-
duced to the probability that sampling n consecu-
tive and independent xi produced r findings small-
er than or equal to Xr when this particular event 
had an individual chance as large as q. Notewor-
thy, this is nothing but the probability associated 
with n binomial trials (i.e. success in withdrawing xi 
≤ Xr) and it can be easily sought whereby the bino-
mial distribution with parameters n and q that is 
Bin(n,q) (23).

The first remark is that given n trials and the a-pri-
ori probability q of success, the expected outcome 
with the greatest chance to happen is exactly n*q 
= r. Therefore, r is the average of the sampling pro-
cess which produced the dataset n and in turn the 
estimate ^xr. Secondly, random outcomes with 
k ≠ r, and thus with larger or smaller number of ob-
servations xi ≤ Xr follow the distribution Bin(n,q). 

The latter notion is noteworthy since it is useful for 
calculating the CI to be placed on xr. In fact, let us 
recall that by definition the CI is the interval that 
covers the putative true value of a population pa-
rameter with confidence 1-α, given the observed 
sample values. Therefore, given sample size of n 
and given the a-priori probability q, the CI can be 
stated in terms of realizations of binomial trials for 
kL ≤ r and kU ≥ r as follows:

P(kL ≤ r ≤ kU) ≈ 1-α (Eq. 10).

Hence, if xL and xU are the observations that cut off 
as many observations as kL and kU respectively, it 
can be written that:

P(xL ≤ xr ≤ xU) ≈ 1-α (Eq. 11).

Thus recalling Eq. 1 it yields (23):

P(xr ≤ xU) - P(xr ≤ xL) = 
Bin(xU;n,q) – Bin(xL;n,q) ≈ 1-α

(Eq. 12). 

Where Bin(xk;n,q) is the cumulative binomial distri-
bution that enables the estimation of the proba-
bility of having up to k success in n trials given the 
a-priori probability q. 

Several remarks are in order. First, Eq. 12 does not 
provide an exact coverage as it was for Eq. 7 since 
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Bin(n,q) is a discrete distribution with only n+1 out-
comes. More precisely, it tells that each value in 
the pair (xL;xU) must correspond to a fraction in the 
cumulative probability so that their difference is as 
close as possible to 1-α (and sometimes the sym-
bol “≥” is preferred to “≈”). Therefore, (xL;xU) must 
be sought through an iterative procedure that at-
tempts several alternative pairs and compares. 
Second, Eq. 12 only depends on the realization of 
q probability in n trials and not on the sample sta-
tistics. Therefore, this method does not require 
any assumption regarding the underlying distribu-
tion of data, so that it is regarded as distribution-
free or non-parametric (NP-CI). 

If sample size is adequate (usually n ≥ 20) it is pos-
sible to exploit the so-called normal approxima-
tion of the binomial distribution to simplify the 
procedure (24). In fact, it can be stated that:

lower NP-CI = (n*q) – zα/2* 
((n*q)*(1 - q))0.5

(Eq. 13)

upper NP-CI = (n*q) + zα/2 * 
((n*q)*(1 - q))0.5

(Eq. 14).

Where the term (n*q)*(1-q) in both equations is the 
standard deviation of the approximated normal 
distribution and zα/2 is the standardized value of 
the normal quantile (Eq. 2) cutting off the values in 
either tail whose cumulative probability is less 
than α/2. The equations above return the size of 
the subset that they respectively bound so that 
the rounded value corresponds to the position of 
the bounding value within the ordered set. For in-
stance, if Eq. 13 yielded “6” then the lower NP-CI 
would correspond to the observation upper-
bounding the subset of the least 6 observations. 
See Appendix for further details on calculation.

The resampling-based non-parametric 
(bootstrap) CI method

A third way for estimating CI about the quantile 
estimate involves data resampling (25). The under-
lying principle is quite obvious: if the random sam-

ple was produced by virtue of the “tendency” to 
follow a certain distribution in the original popula-
tion, then the random sampling of the sample it-
self (i.e. the re-sampling) would reasonably repli-
cate the very same tendency (26,27). 

Let us accordingly suppose that the “tendency” for 
a quantile q was represented by r = n*q, so that in 
absence of any sampling bias xi ≤ xr was actually xi 
≤ Xr and the population estimate ^xr would be un-
biased. In a real-world sample, randomness bias 
adds to the tendency in the population so that 
how many observations that were truly xi ≤ Xr re-
mains unknown and ^xr is only a “particular” reali-
zation of Xr. Nonetheless, resampling the sample 
adds further bias to the former sampling process, 
so that the “second-generation” estimate ^xr 
would be differently biased.

If what is stated so far holds true for a single resa-
mple, actually randomness in resampling means 
that resampling bias may even be negative with 
respect to the original sampling bias. Therefore, if 
the resampling process was repeated a very large 
number of times (i.e. ≥ 1,000), then a distribution 
of bias about ^xr would arise (27). Therefore, the 
resampling distribution would show different pro-
portions of observations xi ≤ xr, and thus of xi ≤ Xr, 
thereby allowing to gain information on the puta-
tive values for the true population parameter Xr. 
Notably, this is somehow similar to what seen pre-
viously for the NP-CI, where the binomial distribu-
tion was used to show alternative partitioning for 
the same sampling size n and the a-priori probabil-
ity q. 

The way in which it is used the information about 
the shape of the resampling distribution of Xr 
grounds the so-called non-parametric Bias Cor-
rected-accelerated bootstrap method for building 
CI (BCa-CI) (28). Briefly, if α/2 and 1-α/2 are the per-
centiles of the resampling distribution providing 
1-α coverage, indeed their centring and thus accu-
racy about the true population parameter is cor-
rect only when the resampling distribution is unbi-
ased. Otherwise, it is necessary to adjust their “po-
sition” shifting the percentile boundaries from the 
original points to new ones that are the following:
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lower BCa-CI = Φ (̂ z0 + 
((̂ z0 + zα) / (1 - ^a*(̂ z0 + zα)))

(Eq. 15)

upper BCa-CI = Φ (̂ z0 + 
((̂ z0 + z1-α) / (1 - ^a*(̂ z0 + z1-α))) 

(Eq. 16),

where Φ denotes the cumulative standard normal 
distribution, zα and z1-α are the quantiles of the 
standard normal distribution, ^z0 and ^a are the 
parameters accounting respectively for resam-
pling bias (i.e. the standardized proportion of ^xr > 
xr ) and skewness (i.e. change of variance across 
the distribution from tail to tail when they are not 
symmetric about ^xr) (25,28). Of course, the ex-
pected coverage probability remains 1-α. More 
comprehensive explanation on bootstrap resam-
pling methods and related procedures to build CI 
can be found elsewhere (29-32).

Simulation study

The basic features concerning CI are represented 
by: a) the actual coverage probability or interval 
accuracy, b) the interval width and c) the interval 
centring or asymmetry (i.e. the ratio between the 
distances of the estimate from each of the bound-
aries). For the sake of conciseness we concerned 
mainly with point “a” as it is the one that should 
primarily be considered when making compari-
sons through different methods. Nonetheless, 
points “b” and “c” were considered only when the 
actual coverage probability was close to the nomi-
nal goal of 1-α.  

To this end, we proceeded as follows: a) a theoreti-
cal model represented by the generalized 3-pa-
rameter lognormal distribution was used to gener-
ate sets of artificial data each featured by a combi-
nation of location (α = 0.5, 1.0, 2.0 and 3.0) scale (β 
= 0.05, 0.2, 0.5 and 1.2) and threshold (γ = 0) in or-
der to reproduce a particular degree of asymme-
try and tailing (i.e. skewness) with only positive val-
ues (X ≥ 0); b) for each set it was generated 3 
batches of 100 samples sized n = 20, n = 60 and n 
= 120 respectively; c) for each combination of pa-
rameters the 2.5th, 25th, 50th, 75th and 97.5th per-
centiles were computed whereby the correspond-

ing theoretical lognormal function obtaining the 
“true” or population value and the actual coverage 
probability was the proportion of sample CI that 
contained it. Particularly, CI were computed 
whereby Eq. 8 and Eq. 9 for P-CI, Eq. 13 and Eq. 14 
for NP-CI, and Eq. 15 and Eq. 16 for BCa-CI. In order 
to evaluate and make appropriate comparisons on 
performance, the advisable optimum was repre-
sented by covering at least the 1-α nominal value 
which was set equal to 95% in this study. 

All the calculations were performed using Excel 
2010 (Microsoft Corp., Redmond, USA), except for 
BCa that was performed using SPSS 20.0 (IBM 
Corp., Armonk, USA) and data generation that was 
carried out exploiting the pseudo-random num-
ber generator embedded in Minitab 17 (Minitab 
Inc., State College, USA).  

An electronic spreadsheet based on Microsoft Ex-
cel framework is provided in Supplementary ma-
terial in order to allow automatic calculations of 
P-CI and NP-CI for up to 500 sample data, plus an 
additional file with Worked examples showing 
practical applications in "real-world" scenarios of 
the methods here described.

Results

Data modelling

The combinations of scale and location parame-
ters gave rise to the following data models (Figure 
1): S1) for β = 0.05 the shape was almost Gaussian 
and thereby equivalent to a normal distribution 
with coefficient of variation CV ≈ 5% and shape 
changing from leptokurtic (i.e. peaky) by α = 0.5 to 
platykurtic (i.e. flat) by α = 3.0; S2) for β = 0.2 the 
shape was almost Gaussian and thereby equiva-
lent to a normal distribution with coefficient of 
variation CV ≈ 20% and same changes in shape 
seen for S1 at the variation of α; S3) for β = 0.5 the 
shape was right-skewed and changed from mini-
mal right-tailed and platykurtic by α = 0.5 to heav-
ily right-tailed and platykurtic by α = 3.0; S4) for β 
= 1.2 the shape was left-fronted (i.e. almost no left 
tail) and changed from leptokurtic with short 
right-tailing by α = 0.5 to platykurtic long heavy 
right-tailing by α = 3.0.

http://www.biochemia-medica.com/assets/images/upload/Clanci/29/29_1/01_Ialongo_Supplementary_material.pdf
http://www.biochemia-medica.com/assets/images/upload/Clanci/29/29_1/01_Ialongo_Supplementary_material.pdf
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Figure 1. Theoretical frequency distribution of the simulated data generated by the 3-parameter lognormal probability density 
function. By varying scale (β) and location (α) parameters with threshold (γ) fixed at 0 it is possible to reproduce different combina-
tions of asymmetry, tailing and kurtosis (flatness) that give rise to the testing conditions described in the result section as S1 - S4. In 
general, increasing α gives more flatness to the shape while β more asymmetry, whereas γ relatively affects the degree of left-front-
ing since it constrains the distribution of data to a certain lower bound.

CI accuracy

Analysis showed four different scenarios with re-
spect to the actual coverage probability. When 
shape was the kind of S1 (Figure 2), the P-CI per-
formed better than both NP-CI and BCa-CI  for n = 
20 as well as n = 60, while the three were almost 
equivalent for n = 120. However, the P-CI was the 
only one to provide adequate coverage probabili-
ty for both the extreme (2.5th and 97.5th) and the 
central percentiles (25th, 50th and 75th). 

When the shape was the kind of S2 (Figure 3), the 
three CI-building procedures performed almost 
equally adequate for the central percentiles re-
gardless of n, while only the BCa-CI was close to 
the goal of 1-α for the extreme percentiles when 
sample size was large (i.e. n = 120). 

When the shape was the kind of S3 (Figure 4), the 
P-CI resulted in unsatisfactory performance re-
gardless of n for any percentile except for the 25th. 
On the contrary, both NP-CI and BCa-CI performed 
satisfactorily for the central percentiles, but their 
coverage of the extreme ones was always slightly 
below the goal of 1-α even for n = 120.

Finally, when the shape was the kind of S4 (Figure 
5), the P-CI always returned unreliable boundaries 
(e.g. negative values) or poor coverage depending 
on n. Also in this case, both NP-CI and BCa-CI al-
ways provided satisfactory performance for the 
50th percentile regardless of the data shape while 
the capability to cover all three central percentiles 
was gained just for n = 120 and platykurtic distri-
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Figure 2. Actual coverage probability in the quasi-Gaussian model of data with low CV% (S1). The coordinates in brackets (β;α;n) rep-
resent scale (β) and location (α) parameters of the lognormal distribution (with 0 threshold) generating the artificial data for a given 
sample size (n). The solid black line shows the desired coverage probability (95% in this case) that is achieved when the symbol repre-
senting the parametric-CI (circle), nonparametric-CI (square) or BCa-CI (triangle) lays on it.

bution. Notably, extreme percentiles were never 
adequately covered regardless of shape and sam-
ple size.

CI width and shape

Whit respect to extreme percentiles, width and 
shape of P-CI was incomparable with NP-CI and 
BCa-CI because of poor accuracy in the latter two 
methods. 

With respect to central percentiles, for samples 
generated according to models S1 and S2, all three 
building methods returned fairly symmetric inter-
vals, which were sensibly narrower for the P-CI. 
However, when data where generated according 

to model S3 and S4, data skewness reflected into  
proportionally increasing width and symmetry by 
25th to 75th percentile for both NP-CI and BCa-CI. 

It is remarkable that there was negligible differ-
ence in the boundaries returned by NP-CI and 
BCa-CI for a given percentile, shape and size of the 
sample up to n = 120. That similitude was pre-
served up to the size n = 320 (data not shown), 
even though BCa-CI resulted slightly narrower de-
spite being equally centred to NP-CI (Figure 6). 

Discussion

In this work, we described three methods for 
building CI on quantiles and percentiles and inves-
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Figure 3. Actual coverage probability in the quasi-Gaussian model of data with high CV% (S2). The coordinates in brackets (β;α;n) 
represent scale (β) and location (α) parameters of the lognormal distribution (with 0 threshold) generating the artificial data for a 
given sample size (n). The solid black line shows the desired coverage probability (95% in this case) that is achieved when the symbol 
representing the parametric-CI (circle), nonparametric-CI (square) or BCa-CI (triangle) lays on it.

tigated their performance regarding different data 
shape and sample size. Foremost, we observed 
that NP-CI and BCa-CI almost equally behaved in 
all the situations herein explored, while P-CI was 
evidently something different because explicitly 
bounded to the normality of data. However, the 
major difference was due to the way the three pro-
cedures produced the CI boundaries. Indeed, the 
P-CI relied upon the distribution of the sample sta-
tistic and thus an external set of values derived by 
a theoretical distribution (the non-central t). By 
contrast, NP-CI as well as BCa-CI used observed 
values, and precisely the NP-CI did it directly by 
picking up value from the sample according to an 
alternative partitioning while the BCa-CI did it in-
directly by recreating the alternative partitioning 

through resampling and picking up the values af-
terwards. Thereby, NP-CI and BCa-CI were con-
strained to return boundaries that were always 
within the range of the sample values.

Such technical aspects explain our major findings. 
Indeed, NP-CI and BCa-CI never returned CI 
boundaries with negative sign, which is crucial 
since we supposed to deal only with positive 
quantities. However, the analysis of the extreme 
percentiles demonstrated that their performance 
was dramatically affected by the sample size for 
they required n = 120 or even larger depending on 
the degree of skewness and tailing to achieve ac-
ceptable accuracy (i.e. ≈ 90%) (33,34). In contrast, 
P-CI were accurate yet by n = 20 where the shape 
was close to normality (e.g. S1), showing the better 
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Figure 4. Actual coverage probability in the right-skewed model of data with right tailing (S3). The coordinates in brackets (β;α;n) 
represent scale (β) and location (α) parameters of the lognormal distribution (with 0 threshold) generating the artificial data for a 
given sample size (n). The solid black line shows the desired coverage probability (95% in this case) that is achieved when the symbol 
representing the parametric-CI (circle), nonparametric-CI (square) or BCa-CI (triangle) lays on it.

accuracy of parametric approach (18,22,33). Nota-
bly, these findings seem to be contrasting with the 
recommendation of the International federation 
of clinical chemistry (IFCC) according to which CI 
for RI should be computed by means of bootstrap-
ping (14). In our opinion, this can be explained 
considering that IFCC aimed at preventing inap-
propriate use of parametric techniques by favour-
ing robustness of the procedure over accuracy of 
the method. In fact, in order to get reliable P-CI it is 
necessary to satisfy three conditions: 1) that the 
underlying distribution of data is correctly ascer-
tained, 2) that the fitly P-CI procedure is available, 
and 3) that the parametric method is appropriate-
ly chosen for that distribution. The reader can refer 

to the worked examples provided in Supplemen-
tary materials for a more practical insight also pre-
liminary data analysis. In this regard, we feel to 
suggest the Anderson-Darling as it is a goodness-
of-fit test that quantifies the degree of deviation 
from normality whereby the AD statistics. None-
theless, we also recommend using a normality 
plot to visually inspect potential local deviations in 
the body or tail of the data distribution, and thus 
Percentile-Percentile plot or Quantile-Quantile plot 
for central or extreme percentiles respectively.

NP-CI and BCa-CI were always fairly accurate with 
respect to the central percentiles, and in quasi-
normal samples (e.g. S1) they had comparable per-
formance to P-CI although producing slightly wid-
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Figure 5. Actual coverage probability in left-fronted model of data with left fronting (S4). The coordinates in brackets (β;α; ) repre-
sent scale (β) and location (α) parameters of the lognormal distribution (with 0 threshold) generating the artificial data for a given 
sample size (n). The solid black line shows the desired coverage probability (95% in this case) that is achieved when the symbol repre-
senting the parametric-CI (circle), nonparametric-CI (square) or BCa-CI (triangle) lays on it.

er intervals and thus being less conservative (22). 
For n ≤ 120, negligible difference was found in the 
boundaries returned by NP-CI and BCa-CI respec-
tively. Of course, in other models of skewness (e.g. 
logistic, log-logistic or Weibull), the location of 
data especially in small sized samples may pro-
duce some more pronounced deviations due to 
the different weight that tailing gains in the distri-
bution shape. However, we are confident that the 
non-parametric method is actually suitable in the 
common practice since it is readily computable by 
means of electronic spreadsheets (as for instance 
the one provided in Supplementary Material).

In conclusion, CI should be included for percen-
tiles whenever they are intended as estimates of a 

population parameter or a criterion to be applied 
outside the sample where they were estimated. To 
this end the theoretical distribution underlying 
the data structure should be always investigated 
in order to facilitate the choice of the more accu-
rate and conservative parametric CI. In this regard, 
a statistical test able to quantify the degree of de-
viation together with a normality plot should be 
always used in order to assess the compliance of 
data with the available methods. In the case that 
parametric methods were not applicable or avail-
able, NP-CI and BCa-CI should be equally trusted 
for the central percentiles, whereas for the ex-
treme percentiles the choice should be based on 
careful evaluation of the degree of skewness and 
the density of data in the tails of the distribution.
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Figure 6. Example of actual coverage probability (CI accuracy) 
pattern by numeric simulation. It is shown an example of the 
25th percentile CI for sample size n = 60 and parameters of the 
lognormal distribution scale β = 0.2, location α = 0.5, threshold 
γ = 0, computed according to the parametric (a), nonparametric 
(b) and BCa (c) method. Dotted grey line is the true population 
25th percentile while solid black lines are the CI that do not con-
tain it.
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Appendix

Finding out percentiles of the non-central t distribution

The most challenging part of computing the P-CI 
is finding the value of the non-central t distribu-
tion. Actually, this is unavailable through Microsoft 
Excel (unless third-part add-ins are used) as well as 
some statistical packages most familiar in the bio-
medical field (e.g. Medcalc). Fortunately, the “Kei-
san” (Casio Computers Co., Tokyo, Japan) offers 
high-precision on-line calculation from 6 up to 50 
significant figures (https://keisan.casio.com/exec/
system/1180573219). In Keisan the computation al-
lows only λ ≥ 0 whereas the P-CI can require a neg-

ative value. To this concern, recalling that λ is a fac-
tor shifting and skewing the central t distribution 
away from its symmetry about 0, it is easy to un-
derstand how non-central t percentiles can be 
simply flipped and sign-inverted to satisfy symme-
try in the negative λ. Hence, placing a = α/2 and b 
= 1 - α/2 are the percentiles for λ, then for - λ they 
turn into a’ = - (1 - a) and b’ = - (1 - b) and thus a’ = 
- (1 - α/2) and b’ = - (α/2). For instance, given λ = 3 
and ν = 20 it yields a = 1.027 and b = 5.663, then 
for λ = - 3 it turns into a’ = - 5.663 and b’ = - 1.027.

Practical issues in calculating NP-CI for extreme quantiles

Because Bin(n;q) is finite, calculation for extreme 
percentiles boundaries may lead to unreal results 
in small samples. For instance, with N = 20 the in-
dex of the lower boundary for the 2.5th percentile 
and the 95% coverage probability is actually - 1 if 
data are approximately normal. Thus, in order to 
form this CI in the appropriate manner, one may 
choose to set arbitrarily the lower boundary to the 
least observed value in the sample. Of course this 

way it is cut off part of the actual coverage proba-
bility that is bound to be systematically smaller 
than the theoretical value unless the sample size is 
adequately large (N > 300 by calculation). To this 
end there are other methods for computing NP-CI 
(although not via simple electronic spreadsheet) 
that overcome this limitation especially for small 
sized samples (22,33,35). 


