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Supplementary material  

 

NOTE 1 – On the use of natural or surrogate samples to control the analytical 

process 

The frequency distribution of an analyte value in a biological sample, which reflects 

the state of a biological parameter, depends on the intrinsic characteristics of an 

individual and the conditions in which the individual is at the time of observation (i.e., 

sample collection). The width of this distribution (assumed to be normal) is given by: 

biological variance = between-subject variance + within-subject variance 

or in biostatistical terminology considering a given population’s homeostatic point (x̄): 

CVbiological = CVgroup + CVindividual. 

Measuring the parameter, an additional component is added to the biological 

variance of the value. This depends on the distribution of the error associated with 

the measurement method used: 

total variance = biological variance + analytical variance 

and again: 

CVtotal = CVbiological + CVanalytical. 

The analytical variance plays a crucial role when the same sample analysis is 

repeated, as for instance when the sample is used for controlling the analytical 

process according to the Levey and Jennings adaptation of the Shewhart quality 

control procedure. Conversely, biological variance is pivotal when the sample has 

exhausted its half-life (consumed or degraded) and needs to be restored. 

Indeed, the value of a new biological sample cannot be chosen but only be expected 

within a range whose width depends on biological variance. If this variance is large 

and analytical variance changes with the concentration of the analyte (i.e., constant 
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coefficient of variation), the new control sample with a different target value imposes 

to completely reset the control procedure (i.e., loosing historical data since referring 

to different conditions). 

The Belk and Sunderman model (reference 3 in bibliography), formerly proposed for 

external proficiency testing, elegantly solves this problem by replacing the biological 

sample with a surrogate whose characteristics do not affect the analytical variance 

(commutability). The surrogate sample is prepared by adding the analyte to a natural 

or artificial matrix, so its concentration (to be used as the target for the process) is 

determined in advance. This allows the biological variance to be eliminated (because 

the variance of a constant is zero), or rather replaced with a component, which we 

might call "metrological," that is manipulable and therefore can be made negligible for 

the purpose of controlling the analytical process quality. 

For a surrogate control sample, we can say: 

CVmetrological << CVbiological or CVmetrological  0 

Thus: 

CVtotal = CVmetrological + CVanalytical  CVtotal = CVmetrological 

The Belk and Sunderman model is cost-effective, standardizable, and metrologically 

traceable, and represents the dominant model for control materials in modern times 

although it is not properly acknowledged. It allows to reproduce the analyte value 

either in normal or pathological conditions, so it involves the preparation of multiple 

samples to control the same process at different levels. It is therefore intuitive that, as 

the process is unique, the measured values of the control levels tend to be 

correlated. 
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NOTE 2 – Symbols and properties of matrices (a gentle introduction) 

This note aims to provide sufficient knowledge to understand the formulas presented 

in the article. It is not exhaustive of matrix algebra, and readers are encouraged to 

consult appropriate texts for a deeper understanding. 

A matrix is defined and denoted by the bold letter A (or with the upper script A⃗) as 

an orderly array of k elements in p columns and m rows (so k = m*p): 

𝐀 = [
4 3
7 11
3 5

]. 

 

Here are some key types and properties of matrices:  

a) Scalar: a 1 x 1 matrix, i.e., a single number. 

𝐀 = [5] = 5 

b) Vector: a 1 x p matrix (one row and p columns) or mx1 matrix (m rows and one 

column). 

𝐀 = [3 9] ; 𝐁 = [
5

10
] 

c) Square matrix: an m x p matrix where m = p; this matrix identifies the elements 

forming the diagonal of the array (in the example, the numbers “9”, “1”, and 

“8”). 

𝐀 = [
9 2 3
4 1 4
5 7 8

] 

d) Identity matrix: a square matrix where all elements are 0 except for those on 

the diagonal, which are 1; denoted by “I”. 

𝐈 = [
1 0 0
0 1 0
0 0 1

] 
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e) Symmetric matrix: a square matrix where off-diagonal elements are mirror-

symmetrical. 

𝑩 = [
3 5 9
5 1 2
9 2 4

] 

Consider now two matrices A = mA x pA and B = mB x pB:  

f) Sum and subtraction: these operations proceed element by element, so it is 

necessary that mA = mB and pA = pB, i.e., the matrices must have the same 

dimensions. If this condition is met, then A + B = B + A = C, as in linear 

algebra.  

𝐀 + 𝐁 = [
2 5
1 2

] + [
3 6
1 6

] = [
2 + 3 5 + 6
1 + 1 2 + 6

] = [
5 11
2 8

] 

g) Matrix product: this operation is allowed only if the first multiplier has as many 

rows as the columns in the second multiplier (i.e. mA = pB), and it results in a 

matrix with mA rows and pB columns. Therefore, A x B ≠ B x A. 

𝐀 × 𝐁 = [
1 2 4
5 3 0

] [
2 6
7 0
3 9

] = [
1 ∗ 2 + 2 ∗ 7 + 4 ∗ 3 1 ∗ 6 + 2 ∗ 0 + 4 ∗ 9
5 ∗ 2 + 3 ∗ 7 + 0 ∗ 3 5 ∗ 6 + 3 ∗ 0 + 0 ∗ 9

] = [
28 42
31 30

] 

𝐀 × 𝐁 = [
2 6
7 0
3 9

] [
1 2 4
5 3 0

] = [
2 ∗ 1 + 6 ∗ 5 2 ∗ 2 + 6 ∗ 3 2 ∗ 4 + 6 ∗ 0
7 ∗ 1 + 0 ∗ 5 7 ∗ 2 + 0 ∗ 3 7 ∗ 4 + 0 ∗ 0
3 ∗ 1 + 9 ∗ 5 3 ∗ 2 + 9 ∗ 3 3 ∗ 4 + 9 ∗ 0

]

= [
32 22 8
7 14 28

48 33 12
] 

h) Scalar multiplication: here, the scalar “d” is multiplied by all elements of the 

matrix, i.e., d x A = dA.  

d × 𝐀 = 3 [
2 5
1 2

] = [
3 ∗ 2 3 ∗ 5
3 ∗ 1 3 ∗ 2

] = [
6 15
3 6

] 
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i) Transpose: this operation swaps rows and columns within the matrix 

(maintaining the order of elements), and the transpose is distinguished by the 

symbol “'”; thus, if A = m x p, then A' = p x m and (A')' = A.  

𝐀 = [
1 2 4
5 3 0

] → 𝐀′ = [
1 5
2 3
4 0

] 

j) Inversion: this is a transformation of the matrix that can be assumed to 

correspond to 1/n for the scalar n; the inverse is denoted with the exponent “-

1” and it is important to note that not all matrices are invertible (there are 

methods to determine which ones are) 

𝐀 = [
2 3
6 7

] → 𝐀−𝟏 = [
−1.75 0.75

1.5 −0.5
]. 
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NOTE 3 – Calculation of the vector of means 

The vector 𝛍 of means of p variables can be obtained by calculating the arithmetic 

mean of each column of the matrix and then assembling the results into a column or 

row vector, taking care to maintain the order of results. 

Let’s consider the data shown in the following table, where m1, m2 and m3 are the 

observation taken on p1, p2 and p3 dimensions of the variable x, and �̅� is the average: 

 p1 p2 p3 

m1 2 4 8 

m2 3 5 3 

m3 4 6 1 

sum 9 15 12 

μ 3 5 4 

 

The column-vector and the row-vector are thus the following: 

𝝁 = [
3
5
4

] ;  𝛍′ = [3 5 4] 

Alternatively, 𝛍 can be computed directly using matrix algebra from the matrix of the 

m observations; thus, if A = m x p, then the formula is: 

𝛍′ = 𝟏′ × 𝐀 × (𝟏′ × 𝟏)−1 = (1 ×  m) × (m ×  p) × ((1 ×  m) × (m ×  1))−1 

Here, 1 and 1' are vectors consisting of a row and a column of ones, respectively, as 

many as m and p in A. Let’s calculate the first step: 

𝟏′ × 𝐀 = [1 1 1] ∗ [
2 4 8
3 5 3
4 6 1

]

= [(2 ∗ 1 + 3 ∗ 1 + 4 ∗ 1) (4 ∗ 1 + 5 ∗ 1 + 6 ∗ 1) (8 ∗ 1 + 3 ∗ 1 + 1 ∗ 1)] 

This step allows the calculation of the total for each column: 

 



Biochem Med (Zagreb) 2025;35(2):020701 

𝟏′ × 𝐀 = [1 1 1] [
2 4 8
3 5 3
4 6 1

] = [9 15 12] 

The inverse of the product ((1 ×  m) × (m ×  1))−1 results in the scalar 1/n used in 

the arithmetic mean calculation of n elements. This second step yields the following 

result:  

(𝟏′ × 𝟏)−1 = ([1 1 1] [
1
1
1

])

−1

= 0.33̅ 

Thus, putting together the two steps we get the following multiplication of a row-

vector and a scalar: 

𝛍′ = 𝟏′ × 𝐀 × (𝟏′ × 𝟏)−1 = [9 15 12] ∗ 0.33̅ = [3 5 4] 

Obviously, in order to obtain the row-vector as column-vector: 

(𝛍′)′ = 𝛍 

The vector μ has a single column because each mean of the p variables is treated as 

a single observation of the “average” variable, whereas 𝛍′ has a single row as it 

represents the average for each of the p variable. Therefore, we shall call μ the 

vector of averages, and 𝛍′ the mean vector. Of course this only a mere distinction. 

 

This note was adapted from: Berman HB. How to Compute Vector Means. Available 

from: https://stattrek.com/matrix-algebra/vector-mean. Accessed January 25th 2025. 

Another illuminating contribution for the calculation of the variance-covariance matrix 

is the following: Berman HB. Variance-Covariance Matrix. Available from: 

https://stattrek.com/matrix-algebra/covariance-matrix. Accessed January 25th 2025. 

  

https://stattrek.com/matrix-algebra/vector-mean
https://stattrek.com/matrix-algebra/covariance-matrix
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NOTE 4 – Autocorrelation within the MLQC and correlation between QCs 

Since an assumption of using the multivariate chart is the correlation between 

variables, in the case of the analytical process, it is necessary to demonstrate that 

there is a correlation between the levels of MLQC. However, one could argue that 

this correlation is actually produced by the decomposition of autocorrelated data, 

such as those in the time series in which the quality control results are generated by 

the instrument. 

Autocorrelation is a phenomenon where an ordered series, such as a time sequence, 

has a structure in which each value is related to certain of its previous values. It is 

evident that if MLQC data are natively autocorrelated and not correlated in its level 

components, then using the multivariate control chart is no more appropriate than 

using a unique univariate chart for all the (properly standardized) data. 

To demonstrate autocorrelation in the data series, it is important to remember that 

the MLQC is composed of three surrogate plasma samples (QC1, QC2, QC3), each 

corresponding to different levels of analyte concentration (low, medium, high). The 

instrument used to analyze the MLQC in this study uses a sample loader with fixed 

positions for the control levels. Therefore, even though the analyzer itself is a 

“random access” machine, the sampling of levels always occurs in the same order. In 

this study, the sample order is QC1-QC2-QC3, corresponding to the sequence of 

levels “low-medium-high.” 

Considering that the analytical and non-analytical times of the instrument are roughly 

constant, this sampling scheme creates periodicity in the MLQC data. Indeed, if the 

data are observed as a whole in the order they are generated by the machine, 

without distinguishing the series by the level of MLQC they represent, a repetition of 

triplets of values can be observed, each corresponding to an analytical run. The 
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sinusoidal trend manifests itself due to the differences in concentration within the 

triplet, which is always repeated in the same order and with roughly the same 

magnitude. 

It should be noted that the time series of all MLQC data has uneven spacing. In fact, 

the distance between data points within a triplet is significantly smaller (i.e., minutes) 

than that between triplets (i.e., days): 

 

 

 

To capture this structure, two types of autocorrelation analysis are needed, which 

generate a characteristic function between the distance of autocorrelated elements 

and the size of the correlation: 

1. Overall: simply called the autocorrelation function (ACF), where the correlation 

effect between each value in the series and k of its predecessors is collectively 

measured. 

2. Partial: where the corresponding function (PACF) isolates the correlation effect 

of the k-th preceding element on the one of interest, excluding all 

intermediaries. 

To analyze both types of autocorrelation, the original sequence needs to be 

correlated with itself but with a shift that aligns it with the k-th element. In other words, 

considering a sequence “a-b-c-d-e”, if k=1, the shifted sequence is “b-c-d-e,” and the 

correlation is done by pairing “a-b,” “b-c,” “c-d,” and so on, where the first element of 

the pair belongs to the original series and the second to the shifted series. 

Autocorrelation thus always concerns m-k elements, where m is the length of the 
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original sequence. In time series, the shift is called lag, and k is measured as the 

number of lags with respect to which ACF and PACF are calculated.  

Since the series is composed of triplets of values, and our interest is to demonstrate 

that they are connected, the time series of data must predominantly be analyzed 

using the PACF. This is better understood by considering a prototype sequence of 3 

triplets (corresponding to 3 analytical runs) QC1-QC2-QC3, which produces the 

following alignments up to k=6, i.e., up to the autocorrelation between the first 

element of the leading triplet in the sequence (QC11) and the first element of the 

trailing triplet (QC13).  

 

 

Table A. Lagged alignments of MLQC levels for autocorrelation analysis (subscript 

indicates the triplet) 

lag sequences 

1 
QC11 QC21 QC31 QC12 QC22 QC32 QC13 QC23 QC33 

QC21 QC31 QC12 QC22 QC32 QC13 QC23 QC33 - 

2 
QC11 QC21 QC31 QC12 QC22 QC32 QC13 QC23 QC33 

QC31 QC12 QC22 QC32 QC13 QC23 QC33 - - 

3 
QC11 QC21 QC31 QC12 QC22 QC32 QC13 QC23 QC33 

QC12 QC22 QC32 QC13 QC23 QC33 - - - 

4 
QC11 QC21 QC31 QC12 QC22 QC32 QC13 QC23 QC33 

QC22 QC32 QC13 QC23 QC33 - - - - 

5 
QC11 QC21 QC31 QC12 QC22 QC32 QC13 QC23 QC33 

QC32 QC13 QC23 QC33 - - - - - 

6 
QC11 QC21 QC31 QC12 QC22 QC32 QC13 QC23 QC33 

QC13 QC23 QC33 - - - - - - 
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In contrast, breaking the series into 3 sub-series produces the alignments presented 

in Table B. 

 

Table B. Correlation analysis of MLQC levels (subscript indicates the triplet) 

Bivariate correlation alignment 

r(QC1, QC2) 
QC11 QC12 QC31 

QC21 QC22 QC32 

r(QC1, QC3) 
QC11 QC12 QC31 

QC31 QC32 QC32 

r(QC2, QC3) 
QC21 QC22 QC21 

QC31 QC32 QC32 

 

The PACF of the series (for m=84 triplets) is as follows (calculations were made with 

SPSS 20, IBM Company, Armonk, NY): 

 

Partial autocorrelation is observed up to lag 4 (i.e., k=4), and it peaks at lag 2. 

Looking at Table B, this is consistent with the previously mentioned “forced” 

periodicity of the data. To eliminate this masking effect, it is possible to rearrange the 

order of levels within each triplet, keeping the order of triplets unchanged, and 

standardize the data values using the mean and SD specific to each level. This 

smooths out the disparities due to concentration level and focuses solely on variation 
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as such. The PACF obtained by randomizing one time the data within triplets is as 

follows: 

 

Thus, after standardizing, we find that: 

 

 

Since one of the operations involved randomization, the single result could merely be 

due to chance and needs to be “stabilized” by repeating it a sufficient number of 

times, such as 100. If we consider autocorrelation at a certain lag to be unstable if it 

appears fewer than 5 times out of 100 (i.e., α = 0.05), then we find that the only 

stable autocorrelation is at lag 1. 

Thus, in isolation, the data show chaining: QC1 correlates with QC2, QC2 with QC3, 

and QC3 with QC1 (of the next triplet), even when the order within the triplets is 

randomized and the data standardized. This suggests that the data within a triplet 

naturally move together, and this movement is only slightly affected by the partition 

into triplets (otherwise, we would have seen correlation at lag 3 or higher). 



Biochem Med (Zagreb) 2025;35(2):020701 

Regarding this last point, it is interesting to explain why, if the data are clustered into 

triplets, there is a correlation between QC3 and QC1 across triplets. Notably, the 

PACF of the series of the three levels in isolation shows: 

 

QC1 exhibits autocorrelation at lag 1 and lag 2, unlike the other two series, which 

show none*. Since QC1 is autocorrelated up to lag 2, the QC1 of each triplet 

“resembles” that of the next two triplets. 

Thus: 

1. The lag 1 correlation of the MLQC is explained by the lag 1 and lag 2 

autocorrelation of QC1, allowing QC3 to correlate with QC1 across 

consecutive triplets. 

2. The absence of a lag 2 autocorrelation in the MLQC data sequence is 

explained by the absence of autocorrelation in the QC2 and QC3 sequences, 

with a mechanism analogous (but inverse) to point 1. 

This suggests that the time series of MLQC with “peculiar” uneven spacing, results 

from the offset assembly of correlated series. Therefore, values move more 

coherently within triplets than between them. The coherence within the triplet shows 

they are the product form the same process, but on different levels. As such, the 

MLQC needs to be treated as a multivariate object and not as the assembly of 

univariate pieces. 
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___________________ 

*This different behavior is likely due to the fact that in a nonlinear calibration curve, as 

used by the analytical method that generated the data, the behavior in the low 

concentration range is much more “constrained” than at intermediate or high 

concentrations due to proximity to the quantification and detection limits, which are 

influenced by instrumental background noise. This limit is further raised by chemical 

noise from the progressive instability of reagents, further reducing the freedom of 

variation in results. This likely induces a memory effect at low concentrations, which 

is reflected in autocorrelation in the series.  
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NOTE 5 – A Microsoft® Excel spreadsheet for the analysis of multivariate data 

with Hotelling’s T2 control chart (with synthetic data generator)  

 

Surely, most readers of this work, if not all, are familiar with constructing Shewhart 

univariate charts using electronic spreadsheets. This is possible because calculations 

of the standard deviation, mean, and percentiles of the normal distribution are 

implemented as basic spreadsheet functions, requiring knowledge of elementary. 

Fortunately, the same spreadsheets now offer users the most common matrix 

algebra operations (addition, subtraction, multiplication, inversion, and transposition) 

and percentiles of many probability distributions that are used in the creation of 

control charts. In Microsoft® Excel these functions are the following ones: 

 MMUMLT multiplication (see point “g” in Note 1) 

 MINVERSE  inverse (see point “i” in Note 1) 

 TRANSPOSE  transposition (see point “j” in Note 1) 

The spreadsheet provided as supplementary material for this work, and described in 

this Note, allows for three fundamental activities regarding multivariate quality 

analysis: 

 Establishing the T² chart with historical data in Phase I 

 Analyzing multivariate Phase II data using the chart created in Phase I 

 Generating correlated data for free manipulation and simulating Phases I and 

II 

An additional activity includes the ability to calculate an extra control level based on 

APS (Acceptable Performance Standard), by entering the values of the maximum 

acceptable deviation for each level of MLQC (Multivariate Linear Quality Control). 
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The content, function, and use of the various worksheets in the spreadsheet are 

described in the INSTRUCTIONS sheet. 

It should be noted that to comply with what has been stated so far, the spreadsheet 

does not use macros but only functions that can be called via cell syntax. Therefore, 

all calculations otherwise unavailable are explicitly executed by using different cells 

within the same sheet to develop the necessary components and steps to complete 

the task. This can be clearly seen in the case of the covariance matrix with the 

Holmes-Mergen estimator (see the COV MATRIX sheet), as well as in the generation 

of correlated data with the Cholesky decomposition (see the CORELATED DATA 

GENERATOR sheet). 

Obviously, by not using macros, the spreadsheet cannot dynamically adapt to the 

size of the data sample entered. Therefore, only data triplets can be used - 

necessarily 30 for constructing the chart and up to 12 for analysis. This choice is 

intended to encourage readers to replicate the processes described in this work, 

inviting them to subsequently use this same spreadsheet with their own data. 


