
Supplementary material 

CASE STUDY: Confidence interval (CI) of percentile based quality indicator (QI) for 

the assessment of timeliness  

 

Part I – CI estimation 

The aim of this procedure is to assess whether the TAT of the morning shift for given 

STAT tests was compliant with internal performance specifications that were set in 

agreement with clinicians of the Emergency Department, and which were at least 50% of 

the results delivered within 35 minutes (MED < 35) and at least 90% within 55 minutes 

(P90 < 55).  

The dataset to compute the TAT indicators is the following (in minutes): 

35.49 ; 32.23 ; 30.33 ; 28.26 ; 52.19 ; 30.25 ; 43.84 ; 40.31 ; 37.86 ; 33.14 ; 30.84 ; 37.01 ; 

33.45 ; 32.68 ; 39.09 ; 32.96 ; 29.87 ; 37.65 ; 32.33 ; 40.53 ; 32.28 ; 34.78 ; 31.54 ; 37.32 ; 

44.92 ; 35.59 ; 49.27  

By calculation using a simple Excel spreadsheet the 50th and 90th percentiles are 34.78 

minutes and 44.3 minutes respectively. Thereby one may conclude that quality goals were 

met. However, what is the strength of this evidence against the sampling variability? This 

is not explicit since the percentiles are point estimates and thus subject to imprecision, so 

the CI is suitable to show this out.  

First step is assessing the nature of the distribution of the data. It can be easily achieved 

plotting both histogram and the percentiles (in this case using the “HISTOGRAM” and the 

“PROBABILITY PLOT” procedures of Minitab 17): 
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Both the plots show that the data have poor fitting to normal distribution. The Anderson-

Darling statistics, which is a measure of fit, is 0.896 and the test shows significant 

departure from normality with p < 0.05. Thereby, in order to apply the parametric method, 

data must be normalized but for the LP-CI the transformation must be logarithmic. The 

plots below show the normal fit of the data after transformation: 
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The data look still a bit skewed, however the normality plot shows smaller AD statistic 

(0.565, better fit) and non-significant departure from normality at the test (p > 0.05). 

Thereby one may attempt to apply the LP-CI procedure and thus to take the lognormal as 

the reference model for this data. 

To compute the LP-CI, one has to find firstly the non-centrality parameter (λ) of the non-

central t-distribution, which depends on the sample size (n) and the percentile. The 

formula to find λ is: 

Λ = -z*n0.5 



Thus, since z is the quantile of the standardized normal distribution which corresponds to 

the percentile of the data, z = 0 for the 50th percentile and z = 1.2816 for the 90th 

percentile. Thus, λ = - 0*(27)0.5 = 0 for the 50th percentile and λ = -1.2816*(27)0.5 = -6.6591 

for the 90th percentile. At this point, it is possible to find out the 2.5th and 97.5th percentiles 

of the non-central t-distribution with given λ and n – 1 = 26 degrees of freedom, since 

these points represent the extremes of the sampling error in this model for 95% confidence 

level. The values, computed by means of the on-line calculator Casio’s Keisan, are in the 

following table: 

percentile z λ 
2.5th 

tα/2,[n-1,λ] 

97.5th                            

t1-α/2,[n-1,λ]
 

0.5 0.00000 0.0000 -2.0555 2.0555 

0.9 1.28155 -6.6591 -10.0415 -4.3976 

 

Below it is the web page of Keisan (https://keisan.casio.com/exec/system/1180573220) 

 

With the average m and standard deviation s of the log-transformed data, the CI 

boundaries of the 50th percentile can be then computed: 

Lower LP-CI bound = e[m – (t1-α/2,[n-1,λ]*s*n-0.5)] = e[3.5756-(2.0555*0.1549*0.1925) = 3.5143 

Upper LP-CI bound = e[m – (tα/2,[n-1,λ]*s*n-0.5)] = e[3.5756-(-2.0555*0.1549*0.1925) = 3.6369 



And afterwards the CI for the 90th percentile: 

Lower LP-CI bound = e[m – (t1-α/2,[n-1,λ]*s*n-0.5)] = e[3.5756-(-4.3976*0.1549*0.1925) = 3.7067 

Upper LP-CI bound = e[m – (tα/2,[n-1,λ]*s*n-0.5)] = e[3.5756-(-10.0415*0.1549*0.1925) = 3.8750 

After back-transformation with exponential function the CI for the 50th and 90th percentile 

are 33.59 to 37.97 minutes and 40.72 to 48.18 minutes respectively. Except for the 

percentiles of the non-central t distribution, all calculations can be performed with a simple 

electronic spreadsheet. 

For the non-parametric NP-CI method the calculations are far easier for what is required is 

the proportion of the percentile p, the sample size n and the quantile of the standardized 

normal distribution that corresponds to the 97.5th (which is 1.96). Thereby, for the 50th 

percentile it is: 

Lower NP-CI bound = 0.5*27-(1.96*0.5*(1-0.5))-0.5 = 8 

Upper NP-CI bound = 0.5*27+(1.96*0.5*(1-0.5))-0.5 = 19 

And for the 90th percentile it is: 

Lower NP-CI bound = 0.9*27-(1.96*0.9*(1-0.9))-0.5 = 21 

Upper NP-CI bound = 0.9*27+(1.96*0.9*(1-0.9))-0.5 = 27 

Recalling that the results of these equations correspond to the partition point of the 

sample, it is necessary to order the data and picking them up accordingly as follows: 

order value order value order value order value order value order value 
1 28.26 6 31.54 11 32.96 16 35.59 21 39.09 26 49.27 
2 29.87 7 32.23 12 33.14 17 37.01 22 40.31 27 52.19 
3 30.25 8 32.28 13 33.45 18 37.32 23 40.53   
4 30.33 9 32.33 14 34.78 19 37.65 24 43.84   
5 30.84 10 32.68 15 35.49 20 37.86 25 44.92   

 

Thereby the CI for the 50th and 90th percentile is 32.28 to 37.65 minutes and 39.09 to 

52.19 minutes respectively. Also, in this case, a simple electronic spreadsheet is sufficient. 



In order to apply the BCa-CI it is necessary to perform resampling and estimate the 

parameters of the bootstrap distribution, thereby it is suitable to use a software package 

that automates operation (like SPSS). According to the results of computation (not shown) 

the CI for the 50th and 90th percentile are 32.68 to 37.32 minutes and 41.19 to 49.85 

minutes respectively. 

 

Part II – Actual coverage probability (ACP) estimation 

In order to provide a reliable estimate of the CI, the ACP of the method must be as close 

as possible to the stated confidence level. A simulation study is required to assess this, and 

to this end it is necessary to assume that data follow a distribution model in order to find 

out the true value of the percentiles that are estimated by means of the sample data. 

As it was shown previously, the dataset shows good agreement with the lognormal model 

for log-transformed data were fairly normally distributed: 
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The goodness of the fit is shown by the AD statistic and is 0.152. For comparison, the AD 

for other right-tailed distributions, namely the log-logistic and the Weibull is 0.172 and 

0.175, respectively. To this regard, one should bear in mind this does not mean that 

necessarily the data come from a lognormal distribution, rather that this model well 

approximates the putative originating population.   
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The plot above shows the trivial difference between the lognormal and the log-logistic 

models fitting the actual dataset. The lognormal parameters used to perform the simulation 

study are thus α = 2.178, β = 0.5606 and γ = 25.85. 

To find out the percentiles of the lognormal distribution with parameters α, β and γ it is 

possible to use software packages, however an “empirical” method allows achieve suitable 

approximation avoiding cumbersome calculations. It relies on a simulation where at least 

three huge samples (N > 1,000,000) are generated and percentiles of interest are 

calculated on each of them. Thereby, the approximation of the “true” percentile is the 

average of the point estimates of the sample percentile of three samples sized N = 

50,000,000 each. The calculated percentile obtained by means of the cumulative 

distribution function is thus: 

 

 Percentile 
sample 2.5th 10th 25th 50th 75th 90th 97.5th 
1 28.7928 30.1534 31.8978 34.6781 38.7363 43.9612 52.3391 
2 28.7924 30.1539 31.8987 34.6778 38.7351 43.9569 52.3289 
3 28.7924 30.1548 31.8997 34.6787 38.7359 43.9631 52.3494 
Calculated 28.792 30.154 31.899 34.679 38.736 43.960 52.340 
Mean 28.793 30.154 31.899 34.678 38.736 43.960 52.340 
CV% 0.0013 0.0024 0.0029 0.0014 0.0016 0.0073 0.0196 
Bias -0.001 0.000 0.000 0.001 0.000 0.000 0.000 



 

As it can be seen, the difference falls by the third decimal place and this has no 

reasonable impact on the assessment of the ACP. Thus, calculations can be carried out 

using an electronic spreadsheet for arranging an array of artificial samples. 

 

 

 

The results are summarized in the following table: 

 

 

 

 

 

This shows that no method except for the NP-CI was capable of delivering reliable CI 

estimate under the sample’s conditions. To this concern some considerations are 

mandatory. Firstly, the performance of the LP-CI method depends on the goodness of the 

normalizing transformation, and indeed recalling what seen earlier, the lognormal was not 

optimum for it did not seem reduce completely the right tailing. In fact, if the appropriate 

transformation was used (i.e. the exponential ^-2.5), the ACP would be instead: 

 ACP (%) 
p.tile LP-CI NP-CI BCa-CI 
10th 95 91 95 
75th 98 96 90 
50th 90 96 89 
75th 90 95 83 
90th 80 94 84 



 

 

 

 

This fact raises the second point of discussion that concerns the reliability of the ACP with 

respect to the fitted model. There is panoply of non-Gaussian distributions which can 

produce heavy right-tailing, and many of them can fit the actual data as it is shown below: 

  Percentile 
Distribution 
(paramters) 

AD 2.5th 10th 25th 50th 75th 90th 97.5th 

Lognormal (3) 0.152 28.793 30.154 31.899 34.678 38.736 43.960 52.339 
Weibull (3) 0.175 28.689 29.831 31.702 34.890 39.264 44.149 50.574 
Log-logistic (3) 0.172 28.787 30.241 31.980 34.590 38.503 44.373 57.012 
Fatigue Life (3) 0.149 28.803 30.113 31.856 34.709 38.874 44.043 51.698 
Inverse 
Gaussian (3) 0.149 28.804 30.132 31.872 34.695 38.826 44.013 51.843 

Frechet (3) 0.167 28.722 30.220 31.978 34.649 38.542 44.792 53.038 
Dagum (4) 0.167 28.732 30.222 31.976 34.638 38.528 43.799 53.151 
Burr (4) 0.176 28.711 29.863 31.732 34,900 39.253 44.159 50.718 
Gamma (3) 0.168 28.756 29.985 31.797 34.812 39.065 44.076 51.107 
 

However, for they are closely related and data are scattered by sampling, it is impossible 

to find an “exact” fit. The AD statistics shows that there are at least 9 distributions fitting 

the data adequately, and none of them produces a significant change in the calculation of 

the true percentiles. Therefore, the aim of this procedure is not finding the “true” match 

between the data and a theoretical model, but to find a suitable model to handle them. At 

this stage, we are not interested in whether the data are lognormal or log-logistic, but if the 

CI method can be applied with reliability. For instance, we herein attempted the lognormal 

one for it allows use the LP-CI method, nonetheless the TAT is known to follow the log-

logistic distribution as it has been shown in large set of data. Hence, at the sample level 

ACP (%) of LP-CI with transformation ^-2.5 
10th 25th 50th 75th 90th 
97 96 96 95 97 



there is no means to discriminate perfectly between shapes and one can be confident of 

any of those models giving comparably low AD statistics.  


